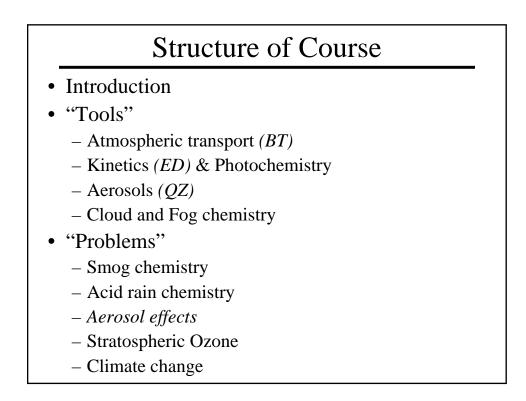
Lecture 1: Introduction to Atmospheric Chemistry

<u>Required</u> Reading: FP Chapter 1 & 2 Additional Reading: SP Chapter 1 & 2

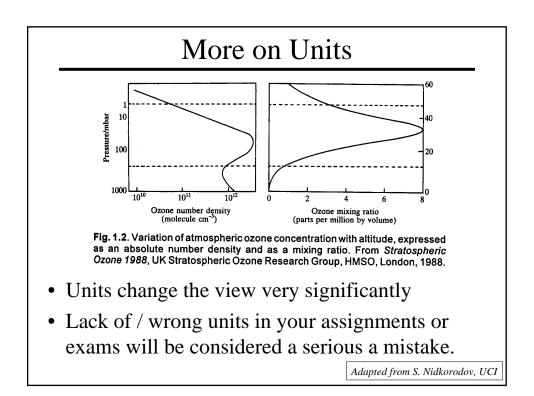

> Atmospheric Chemistry CHEM-5151 / ATOC-5151 Spring 2005 Prof. Jose-Luis Jimenez

Outline of Lecture 1

- Importance of atmospheric chemistry
- Atmospheric composition: big picture, units
- Atmospheric structure
 - Pressure profile
 - Temperature profile
 - Spatial and temporal scales
- Air Pollution:
 - historical origin: AP deaths
 - Overview of problems: smog, acid rain, stratospheric
 O₃, climate change, indoor pollution
 - Continue in Lecture ?

Importance of Atmospheric Chemistry

- Atmosphere is very thin and fragile!
 - Earth diameter = 12,740 km
 - Earth mass ~ 6 * 10^{24} kg
 - Atmospheric mass ~ 5.1 * 10¹⁸ kg
 - -99% of atmospheric mass below ~ 50 km
 - Solve in class: order of magnitude of mass of the oceans? Mass of entire human population?
- Main driving forces to study Atm. Chem. are big practical problems:
 - Deaths from air pollution, smog, acid rain, stratospheric ozone depletion, climate change

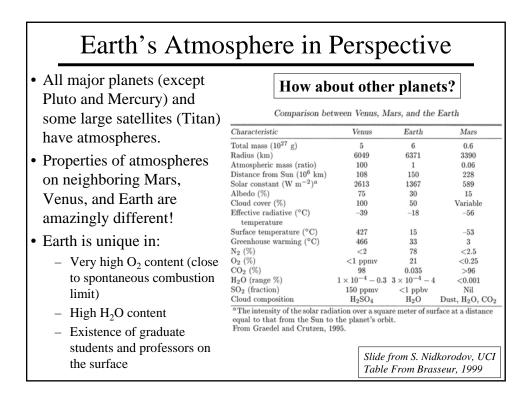

Interdisciplinarity of Atm. Chem.

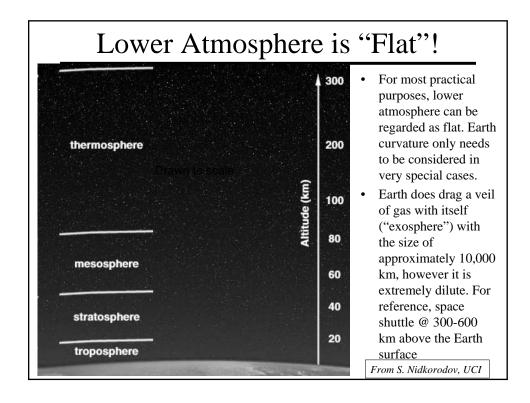
- Very broad field of both fundamental and applied nature:
 - Reaction modeling \rightarrow chemical reaction dynamics and kinetics
 - Photochemistry \rightarrow atomic and molecular physics, quantum mechanics
 - Aerosols \rightarrow surface chemistry, material science, colloids
 - Instrumentation \rightarrow analytical chemistry, electronics, optics
 - Air pollution \rightarrow toxicology, organic chemistry, biochemistry
 - Global modeling \rightarrow meteorology, fluid dynamics, biogeochemistry
 - Global observations \rightarrow aeronautics, space research
 - Air quality standards \rightarrow environmental policies and regulations
- Comparatively new field:
 - First dedicated text book written in 1961 by P.A. Leighton ("Photochemistry of Air Pollution")
 - Ozone hole discovered in 1985 by British scientists, and later by NASA
 - 1995 Nobel prize awarded to Paul Crutzen, Mario Molina, Sherwood Rowland for predicting stratospheric ozone depletion

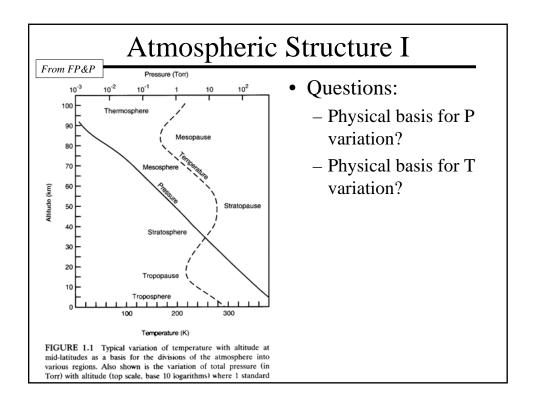
Adapted from S. Nidkorodov, UCI

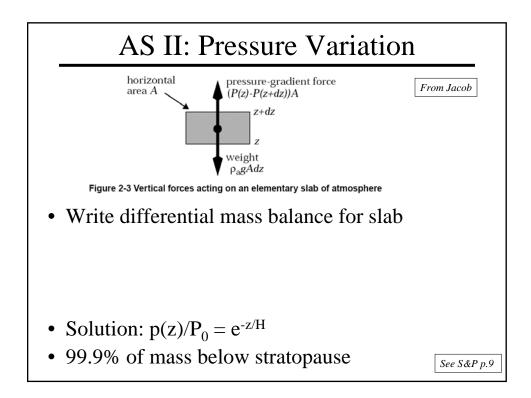
le 1-1 Mixing ratios o	of gases in dry air Mixing ratio	• Units of mixing ratio:
Gas	(mol/mol)	 Mol fraction
Nitrogen (N ₂)	0.78	= Volume fraction
Oxygen (O ₂)	0.21	– ppm: 1 molec in 10 ⁶
Argon (Ar)	0.0093	- ppb: 1 molec in 10 ⁹
Carbon dioxide (CO ₂)	365x10 ⁻⁶	- ppt: 1 molec in 10^{12}
Neon (Ne)	18x10 ⁻⁶	– ppmv, ppbv, pptv
Ozone (O ₃)	0.01-10x10 ⁻⁶	
Helium (He)	5.2x10 ⁻⁶	• Beware European billion
Methane (CH ₄)	1.7x10 ⁻⁶	(10^{12}) , trillion (10^{18}) etc.
Krypton (Kr)	1.1x10 ⁻⁶	• \neq mass fraction
Hydrogen (H ₂)	500x10 ⁻⁹	• Q: approximate mass
Nitrous oxide (N ₂ O)	320x10 ⁻⁹	fraction of Kr in air?

in ppm, pphm, ppb, ppt, and Molecules cm ^{-3} , Assuming 1 atm Pressure and 25°C ^{a}						
Parts per	Unit	Molecules, atoms, or radicals per cm ³				
106	1 ppm	2.46×10^{13}				
10 ⁸	1 pphm	2.46×10^{11}				
10 ⁹	1 ppb	$2.46 imes 10^{10}$				
10^{12}	1 ppt	$2.46 imes 10^{7}$				

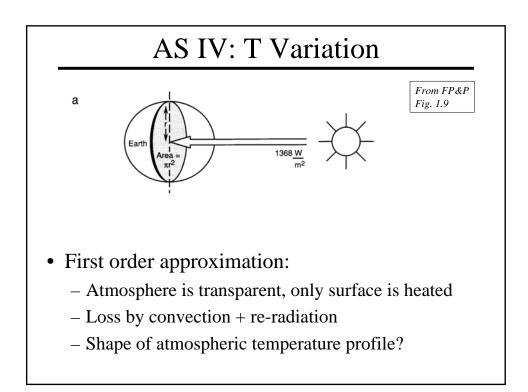

Example on Units


- Solve in class: Dr. Evil decides to poison humankind by spilling 100,000 55-gallon drums of tetrachloromethane in Nevada (MW = 154 g mole⁻¹; ρ = 1.59 g cm⁻³, 1 gallon = 3.785 liters).
- Assuming that all CCl₄ evaporated and that it does not react with anything, calculate its mixing ratio after it gets uniformly distributed through the entire atmosphere.
- Did he accomplish his objective given that the present day CCl₄ mixing ratio is roughly 100 ppt?
- How many drums could one fill with all the CCl₄ in the atmosphere?


Adapted from S. Nidkorodov, UCI


TABL	E 1.1 Atmos	pheric Gases	From S&P		
Gas	Molecular Weight	Average Mixing Ratio (ppm)	Cycle		Status
Ar Ne Kr Xe	39.948 20.179 83.80 131.30	9340 18 1.1 0.09	No cycle	} 6	Accumulation luring Earth's history
N ₂ O ₂	28.013 32	780,840 209,460	Biological and microbiological	} ?	,
CH ₄ CO ₂ CO	16.043 44.010 28.010	1.72 355 0.12 (NH) 0.06 (SH)	Biogenic and chemical Anthropogenic and biogenic Anthropogenic and chemical		
H ₂ N ₂ O SO ₂ NH ₃	2.016 44.012 64.06 17	$\begin{array}{c} 0.58 \\ 0.311 \\ 10^{-5} - 10^{-4} \\ 10^{-4} - 10^{-3} \end{array}$	Biogenic and chemical Biogenic and chemical Anthropogenic, biogenic, chemical Biogenic and chemical		Juasi-steady-state r equilibrium
NO NO ₂	30.006 46.006	$10^{-6} - 10^{-2}$	Anthropogenic, biogenic, chemical		
O ₃	48	$10^{-2} - 10^{-1}$	Chemical		
H ₂ O He	18.015 4.003	Variable 5.2	Physicochemical	J	

• Most atm. chemistry deals with "trace species"

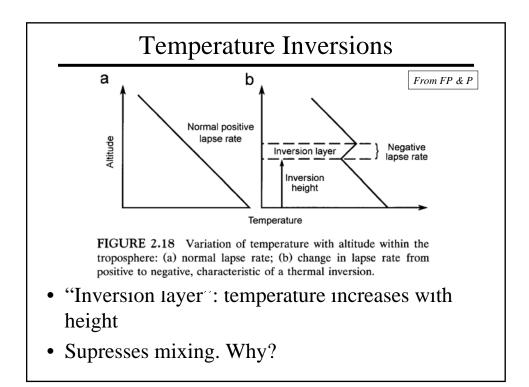


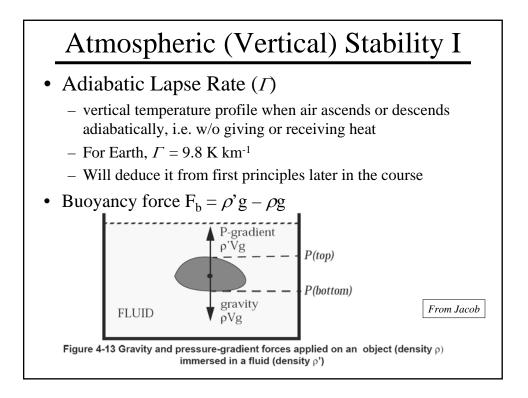
AS III: Species Variation?

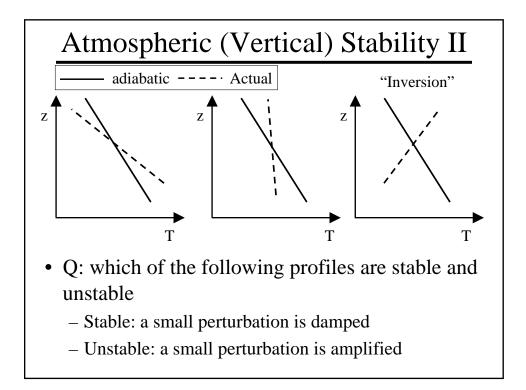
- $H(z) = RT(z)/(MW_{air} * g)$
- Dalton's law: each component behaves as if it was alone in the atmosphere
- $H_i(z) = RT(z)/(MW_i * g)$
 - O_2 at lower altitudes than N_2 ?
 - Some scientists: CFCs could not cause stratospheric
 O₃ depletion; too heavy to rise to stratosphere
- But gravitational separation due to molecular diffusion, much slower than turbulent diffusion
 - Only > 100 km enriched in lighter gases

AS V: T Variation

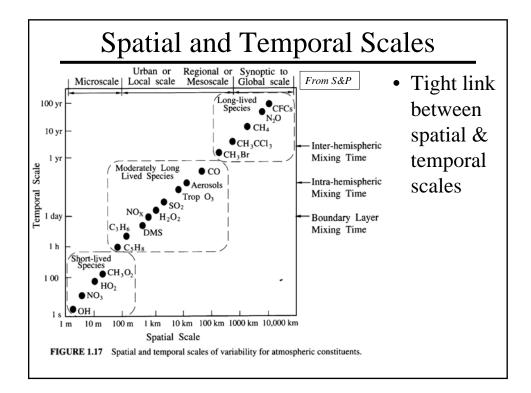
- In the absence of local heating, T decreases with height
- Exceptions: Stratosphere: Chapman Cycle (1930s) $O_2 + hv \rightarrow 2O$

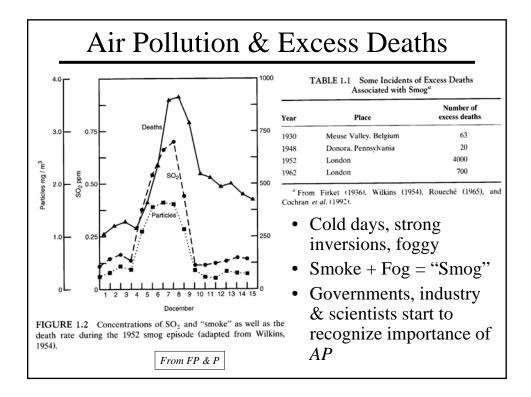

$$O + O_2 + M \rightarrow O_3$$
 (+ heat)

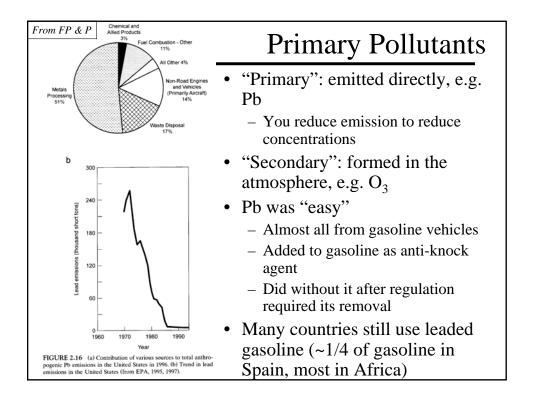

$$O + O_3 \rightarrow 2O_2$$

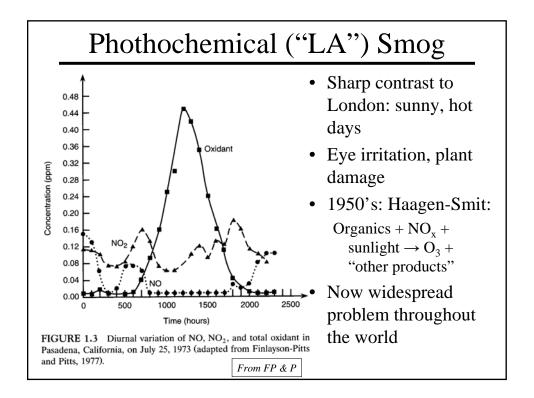

$$O_3 + hv \rightarrow O + O_2$$
 (+ heat)

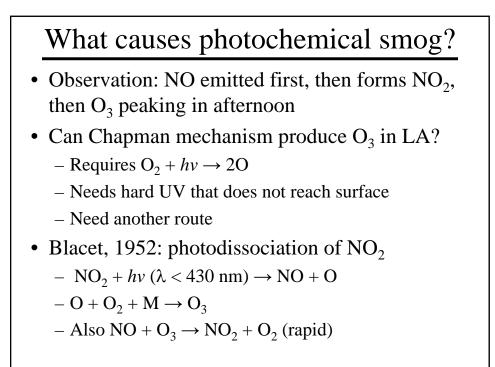
– Q: what is heat at the molecular level?


• Mesosphere: absorption by N₂, O₂, atoms...




Length Scale (km) 1–100	
1-100	
10-1000	
100-2000	
0.1-100	
1000-40,000	
1000-40,000	
100-40,000	
1-40,000	
0.1-100	
1-40,000	




A flavor about the main problems

- London smog
 - Primary pollutants
- Photochemical ("LA") smog
- Global tropospheric pollution
- Particles
 - Health
 - Visibility
- Acid deposition
- Stratospheric ozone depletion
- Global climate change

What causes smog II

- How does NO form NO₂? (w/o O₃)
- Thermal reaction $2NO + O_2 \rightarrow 2NO_2$ very slow
- Answer: organic oxidation

- RCH2R' + OH \rightarrow RC·HR' + H₂O

- $\text{RC·HR'} + \text{O}_2 \rightarrow \text{RCHR'} \text{ (peroxy radical)}$ O-O·
- $\underset{O-O}{\text{RCHR'}} + \text{NO} \rightarrow \underset{O+O}{\text{RCHR'}} + \text{NO}_2 \text{ (alkoxy radical)}$
- Every step in organic oxidation creates NO₂, then O₃